莫比乌斯反演

#


# 洛谷P1390_公约数的和

# 🔗

# 💡

看见 gcdgcd 首先把式子变成我们常用的莫反套路

i=1nj=i+1ngcd(i,j)=k=1ni=1nj=i+1n[gcd(i,j)=k]k=k=1nki=1nj=1n[gcd(i,j)=k]12=k=1nki=1nkj=1nk[gcd(i,j)=1]12\begin{aligned} &\sum\limits_{i=1}^n\sum\limits_{j=i+1}^ngcd(i,j)\\ =&\sum\limits_{k=1}^n\sum\limits_{i=1}^n\sum\limits_{j=i+1}^n[gcd(i,j)=k]*k\\ =&\sum\limits_{k=1}^nk\frac{\sum\limits_{i=1}^n\sum\limits_{j=1}^n[gcd(i,j)=k]-1}2\\ =&\sum\limits_{k=1}^nk\frac{\sum\limits_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{n}{k}\right\rfloor}[gcd(i,j)=1]-1}2 \end{aligned}

11 是为了减去 i=j=1i=j=1 的情况,除 22 是为了消除重复枚举一对的情况

那么对于里面的
i=1nkj=1nk[gcd(i,j)=1]\sum\limits_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{n}{k}\right\rfloor}[gcd(i,j)=1]
我们让
n=nkn'=\left\lfloor\frac{n}{k}\right\rfloor
可以感性地利用莫比乌斯反演化简为
d=1nμ(d)ndnd\sum\limits_{d=1}^{n'}\mu(d)\left \lfloor \frac {n'}d \right \rfloor \left \lfloor \frac {n'}d \right \rfloor
(具体操作看这里)

由于 nk=nn'k=n 是一个曲线函数,则总时间复杂度不会太高
我们对上面化简后的式子写成一个函数 Solve()Solve()

res=k=1nkSolve()12res = \sum\limits_{k=1}^nk\frac{Solve()-1}{2}
Solve()Solve() 里面随便杜教筛一下随便数论分块一下

#

const ll N = 2e6 + 10;
namespace Number {
        ll mu[N], sum[N];
        bool notprime[N];
        vector<ll> prime;
        inline void Sieve () {
                mu[1] = notprime[1] = notprime[0] = 1;
                for ( ll i = 2; i < N; i ++ ) {
                        if ( !notprime[i] ) 
                                prime.push_back(i),
                                mu[i] = -1;
                        for ( ll j = 0; j < prime.size() && i * prime[j] < N; j ++ ) {
                                notprime[i * prime[j]] = 1;
                                if ( i % prime[j] == 0 ) break;
                                mu[i * prime[j]] = -mu[i];
                        }
                }
                for ( ll i = 1; i < N; i ++ ) sum[i] = sum[i - 1] + mu[i]; 
        }
        inline ll g ( ll k, ll x ) { return k / (k / x); }

        map<ll, ll> S;
        inline ll SUM ( ll x ) {
                if ( x < N ) return sum[x];
                if ( S[x] ) return S[x];
                ll res = 1;
                for ( ll L = 2, R; L <= x; L = R + 1 ) {
                        R = min ( x, g(x, L) );
                        res -= (R - L + 1) * SUM(x / L);
                } return S[x] = res;
        }
} using namespace Number;

inline ll Solve ( ll n, ll k ) {
        ll res = 0; n /= k;
        for ( ll l = 1, r; l <= n; l = r + 1 ) {
                r = min(n, g(n, l));
                res += (SUM(r) - SUM(l - 1)) * (n / l) * (n / l);
        }
        return res;
}

int main () {
        ios::sync_with_stdio(false); Sieve ();
        ll n; cin >> n;
        ll res = 0;
        for ( ll k = 1; k <= n; k ++ ) {
                res += k * (Solve(n, k) - 1) / 2;
        }
        cout << res << endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

# 洛谷P1447_能量采集

# 🔗

# 💡

这个和仪仗队那个很像啊
(i,j)(i,j) 位置上的点它前面挡住的人数就是 gcd(i,j)gcd(i,j)
所以我们把柿子抽象出来
main(n,m)=i=1nj=1m(2(i,j)1)=2i=1nj=1m(i,j)nm\begin{aligned}main(n,m)=&\sum\limits_{i=1}^n\sum\limits_{j=1}^m(2*(i,j)-1)\\=&2\sum\limits_{i=1}^n\sum\limits_{j=1}^m(i,j)-nm\end{aligned}
对于 solve(n,m)=i=1nj=1m(i,j)=k=1mnki=1nj=1m[(i,j)=k]solve(n,m)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m(i,j)=\sum\limits_{k=1}^{mn}k\sum\limits_{i=1}^n\sum\limits_{j=1}^m[(i,j)=k]
感性地莫反一下
f(k)=i=1nj=1m[(i,j)=k]f(k)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m[(i,j)=k]
F(k)=i=1nj=1m[k(i,j)]=nkmkF(k)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m[k|(i,j)]=\frac nk\frac mk
f(k)=d=1mnkμ(d)ndkmdkf(k)=\sum\limits_{d=1}^{\frac{mn}k}\mu(d)\frac n{dk}\frac m{dk}

solve(n,m)=k=1mnkd=1nkμ(d)ndkmdk(T=dk)=k=1mnkTkmnkμ(Tk)nTmT=T=1mnnTmTkTkμ(Tk)\begin{aligned}&solve(n,m)\\=&\sum\limits_{k=1}^{mn}k\sum\limits_{d=1}^{\frac nk}\mu(d)\frac n{dk}\frac m{dk}\quad\quad&(T=dk)\\=&\sum\limits_{k=1}^{mn}k\sum\limits_{\frac Tk}^{\frac {mn}k}\mu(\frac Tk)\frac nT\frac mT\\=&\sum\limits_{T=1}^{mn}\frac nT\frac mT\sum\limits_{k|T}k\mu(\frac Tk)\end{aligned}
kTkμ(Tk)\sum\limits_{k|T}k\mu(\frac Tk) 感性地狄利克雷卷积一下 =(μId)(T)=ϕ(T)=(\mu*Id)(T)=\phi(T)
=T=1mnnTmTϕ(T)=\sum\limits_{T=1}^{mn}\frac nT\frac mT\phi(T)

数不大直接暴力跑就行

#

namespace Number {
        const int N = 1e5 + 10;
        int phi[N];
        bool not_prime[N];
        vector<int> prime;

        inline void Sieve () {
                not_prime[0] = not_prime[1] = phi[1] = 1;
                for ( int i = 2; i < N; i ++ ) {
                        if ( !not_prime[i] ) 
                                prime.push_back(i),
                                phi[i] = i - 1;
                        for ( int j = 0; j < prime.size() && i * prime[j] < N; j ++ ) {
                                not_prime[i * prime[j]] = 1;
                                if ( i % prime[j] == 0 ) {
                                        phi[i * prime[j]] = phi[i] * prime[j];
                                        break;
                                } else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
                        }
                }
        }
} using namespace Number;

int main () {
        Sieve ();
        int n, m; cin >> n >> m;
        ll res = 0;
        for ( int i = 1; i <= min (m, n); i ++ ) {
                res += (ll)(m / i) * (n / i) * phi[i];
        }
        cout << res * 2 - (ll)n * m << endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

# 洛谷P1829_Crash的数字表格

# 🔗

# 💡

(1)mian(n,m)=i=1nj=1mlcm(i,j)=k=1mni=1nj=1mi×j×[(i,j)=k]k(1)\\\begin{aligned}mian(n,m)=&\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\\=&\sum\limits_{k=1}^{mn}\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac {i\times j\times[(i,j)=k]}k\end{aligned}

i=ik,j=jki'=\frac ik,\;j'=\frac jk

main(n,m)=k=1mnki=1nkj=1mki×j×[(i,j)=1]=k=1mnksolve(nk,mk){\color{red}main(n,m)}=\sum\limits_{k=1}^{mn}k\sum\limits_{i'=1}^{\left\lfloor\frac nk\right\rfloor}\sum\limits_{j'=1}^{\left\lfloor\frac mk\right\rfloor}i'\times j'\times [(i',j')=1]{\color{red}=\sum\limits_{k=1}^{mn}ksolve(\left\lfloor\frac nk\right\rfloor,\left\lfloor\frac mk\right\rfloor)}

(2)solve(n,m)=i=1nj=1mi×j×[gcd(i,j)=1](2)\\solve(n,m)=\sum\limits_{i=1}^n\sum\limits_{j=1}^mi\times j\times [gcd(i,j)=1]

f(k)=i=1nj=1m[(i,j)=k]ijf(k)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m[(i,j)=k]ij

F(k)=i=1nj=1m[k(i,j)]ijF(k)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m[k\mid(i,j)]ij

i,ji',j' 枚举 kk 倍数, n=nk,m=mk,i=ik,j=jk,i=ik,j=jkn'=\left\lfloor\frac nk\right\rfloor,\;m'=\left\lfloor\frac mk\right\rfloor,\;i'=\frac ik,\;j'=\frac jk,\;i=i'k,\;j=j'k

F(k)=i=1nj=1mikjk=k2n(1+n)2m(1+m)2=k2n(1+n)m(1+m)4F(k)=\sum\limits_{i'=1}^{n'}\sum\limits_{j'=1}^{m'}i'kj'k=k^2\frac{n'(1+n')}2\frac{m'(1+m')}2=\frac{k^2n'(1+n')m'(1+m')}4

f(k)=kdμ(dk)F(d)f(k)=\sum\limits_{k\mid d}\mu(\frac dk)F(d)

solve(n,m)=f(1)=d=1mnμ(d)F(d)=d=1mnμ(d)d2nd(1+nd)md(1+md)4=d=1mnμ(d)d2calc(nd,md){\color{red}solve(n,m)}=f(1)=\sum\limits_{d=1}^{mn}\mu(d)F(d)=\sum\limits_{d=1}^{mn}\mu(d)\frac{d^2\left\lfloor\frac nd\right\rfloor(1+\left\lfloor\frac nd\right\rfloor)\left\lfloor\frac md\right\rfloor(1+\left\lfloor\frac md\right\rfloor)}4{\color{red}=\sum\limits_{d=1}^{mn}\mu(d)d^2calc(\left\lfloor\frac nd\right\rfloor,\left\lfloor\frac md\right\rfloor)}

(3)calc(n,m)=n(1+n)m(1+m)4(3)\\calc(n,m)=\frac{n(1+n)m(1+m)}4

综上所述

{main(n,m)=k=1mnksolve(nk,mk)solve(n,m)=d=1mnμ(d)d2calc(nd,md)\left\{\begin{aligned}&main(n,m)=\sum\limits_{k=1}^{mn}ksolve(\left\lfloor\frac nk\right\rfloor,\left\lfloor\frac mk\right\rfloor)\\&solve(n,m)=\sum\limits_{d=1}^{mn}\mu(d)d^2calc(\left\lfloor\frac nd\right\rfloor,\left\lfloor\frac md\right\rfloor)\end{aligned}\right.

{(1)mian(n,m)=i=1nj=1mlcm(i,j)(2)solve(n,m)=i=1nj=1mi×j×[gcd(i,j)=1](3)calc(n,m)=n(1+n)m(1+m)4\left\{\begin{aligned}&(1)\quad mian(n,m)=\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\\&(2)\quad solve(n,m)=\sum\limits_{i=1}^n\sum\limits_{j=1}^mi\times j\times [gcd(i,j)=1]\\&(3)\quad calc(n,m)=\frac {n(1+n)m(1+m)}4\end{aligned}\right.

剩下的就是利用这个公式进行两重数论分块写了

#

namespace Number {
        const ll N = 1e7 + 10;
        const ll mod = 20101009;
        ll mu[N], sum[N];
        bool notprime[N];
        vector<ll> prime;
        inline ll ksm ( ll a, ll b ) {
                ll res = 1;
                while ( b ) {
                        if ( b & 1 ) res = res * a % mod;
                        a = a * a % mod;
                        b >>= 1;
                }
                return res;
        }
        inline void Sieve () {
                notprime[0] = notprime[1] = mu[1] = 1;
                for ( ll i = 2; i < N; i ++ ) {
                        if ( !notprime[i] ) 
                                prime.push_back(i),
                                mu[i] = -1;
                        for ( ll j = 0; j < prime.size() && prime[j] * i < N; j ++ ) {
                                notprime[i * prime[j]] = 1;
                                if ( i % prime[j] == 0 ) break;
                                mu[i * prime[j]] = -mu[i];
                        }
                }
                for ( int i = 1; i < N; i ++ ) sum[i] = (sum[i - 1] + (mu[i] + mod) * i % mod * i % mod) % mod;
        }
        inline ll g ( ll n, ll k ) { return n / (n / k); }
        inline ll inv ( ll x ) { return ksm(x, mod - 2); }
} using namespace Number;

inline ll Calc ( ll x, ll y ) {
        return (1 + x) * x % mod * (1 + y) % mod * y % mod * inv(4) % mod;
}

inline ll Solve (ll n, ll m, ll k) {
        n /= k, m /= k;
        ll mn = min ( m, n );
        ll res = 0;
        for ( ll l = 1, r; l <= mn; l = r + 1 ) {
                r = min(g(n, l), g(m, l));
                res = (res + (sum[r] - sum[l - 1] + mod) % mod * Calc(n / l, m / l) % mod) % mod;
        }
        return res;
}

int main () {
        ios::sync_with_stdio(false); Sieve ();
        ll n, m; cin >> n >> m;
        ll mn = min ( m, n );
        ll res = 0;
        for ( ll l = 1, r; l <= mn; l = r + 1 ) {    
                r = min(g(n, l), g(m, l));
                res = (res + ( l + r ) * ( r - l + 1 ) % mod * inv(2) % mod * Solve ( n, m, l ) % mod) % mod;
        }
        cout << res << endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

# 洛谷P2158_仪仗队

# 🔗

https://www.luogu.com.cn/problem/P2158

# 💡

我们要求得:
i=1nj=1n[gcd(i,j)=1]\sum\limits_{i = 1}^n\sum\limits_{j=1}^n[gcd(i, j) = 1]

所以设:
f(x)=i=1nj=1n[gcd(i,j)=x]f(x) =\sum\limits_{i=1}^n\sum\limits_{j=1}^n[gcd(i,j)=x]

为使:
F(x)=xdf(d)F(x) = \sum\limits_{x|d}f(d)

设:
F(x)=i=1nj=1n[xgcd(i,j)]F(x)=\sum\limits_{i=1}^n\sum\limits_{j=1}^n[x|gcd(i,j)]

根据莫比乌斯阿反演定理得
f(x)=xdμ(dx)F(d)f(x)=\sum\limits_{x|d}\mu(\frac dx)F(d)

可以发现:
F(d)=i=1n[di]j=1n[dj]=ndndF(d)=\sum\limits_{i=1}^n[d|i] * \sum\limits_{j=1}^n[d|j] = \left \lfloor \frac nd \right \rfloor * \left \lfloor \frac nd \right \rfloor

所以化简为:
f(x)=xdμ(dx)ndndf(x)=\sum\limits_{x|d}\mu(\frac dx)\left \lfloor \frac nd \right \rfloor \left \lfloor \frac nd \right \rfloor

我们要求的是f(1)f(1)

所以:
f(1)=d=1nμ(d)ndndf(1)=\sum\limits_{d=1}^{n}\mu(d)\left \lfloor \frac nd \right \rfloor \left \lfloor \frac nd \right \rfloor

#

/*
           ________   _                                              ________                              _
          /  ______| | |                                            |   __   |                            | |
         /  /        | |                                            |  |__|  |                            | |
         |  |        | |___    _   _   _   ___  _   _____           |     ___|   ______   _____   ___  _  | |
         |  |        |  __ \  |_| | | | | |  _\| | | ____|          |  |\  \    |  __  | |  _  | |  _\| | | |
         |  |        | |  \ |  _  | | | | | | \  | | \___           |  | \  \   | |_/ _| | |_| | | | \  | | |
         \  \______  | |  | | | | \ |_| / | |_/  |  ___/ |          |  |  \  \  |    /_   \__  | | |_/  | | |
Author :  \________| |_|  |_| |_|  \___/  |___/|_| |_____| _________|__|   \__\ |______|     | | |___/|_| |_|
                                                                                         ____| |
                                                                                         \_____/
*/
#include <unordered_map>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <utility>
#include <string>
#include <vector>
#include <cstdio>
#include <stack>
#include <queue>
#include <cmath>
#include <map>
#include <set>

#define G 10.0
#define LNF 1e18
#define EPS 1e-6
#define PI acos(-1.0)
#define INF 0x7FFFFFFF

#define ll long long
#define ull unsigned long long

#define LOWBIT(x) ((x) & (-x))
#define LOWBD(a, x) lower_bound(a.begin(), a.end(), x) - a.begin()
#define UPPBD(a, x) upper_bound(a.begin(), a.end(), x) - a.begin()
#define TEST(a) cout << "---------" << a << "---------" << '\n'

#define CHIVAS_ int main()
#define _REGAL exit(0)

#define SP system("pause")
#define IOS ios::sync_with_stdio(false)
//#define map unordered_map

#define _int(a) int a; cin >> a
#define  _ll(a) ll a; cin >> a
#define _char(a) char a; cin >> a
#define _string(a) string a; cin >> a
#define _vectorInt(a, n) vector<int>a(n); cin >> a
#define _vectorLL(a, b) vector<ll>a(n); cin >> a

#define PB(x) push_back(x)
#define ALL(a) a.begin(),a.end()
#define MEM(a, b) memset(a, b, sizeof(a))
#define EACH_CASE(cass) for (cin >> cass; cass; cass--)

#define LS l, mid, rt << 1
#define RS mid + 1, r, rt << 1 | 1
#define GETMID (l + r) >> 1

using namespace std;

template<typename T> inline void Read(T &x){T f = 1; x = 0;char s = getchar();while(s < '0' || s > '9'){if(s == '-') f = -1; s = getchar();}while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}x*=f;}
template<typename T> inline T MAX(T a, T b){return a > b? a : b;}
template<typename T> inline T MIN(T a, T b){return a > b? b : a;}
template<typename T> inline void SWAP(T &a, T &b){T tp = a; a = b; b = tp;}
template<typename T> inline T GCD(T a, T b){return b > 0? GCD(b, a % b) : a;}
template<typename T> inline void ADD_TO_VEC_int(T &n, vector<T> &vec){vec.clear(); cin >> n; for(int i = 0; i < n; i ++){T x; cin >> x, vec.PB(x);}}
template<typename T> inline pair<T, T> MaxInVector_ll(vector<T> vec){T MaxVal = -LNF, MaxId = 0;for(int i = 0; i < (int)vec.size(); i ++) if(MaxVal < vec[i]) MaxVal = vec[i], MaxId = i; return {MaxVal, MaxId};}
template<typename T> inline pair<T, T> MinInVector_ll(vector<T> vec){T MinVal = LNF, MinId = 0;for(int i = 0; i < (int)vec.size(); i ++) if(MinVal > vec[i]) MinVal = vec[i], MinId = i; return {MinVal, MinId};}
template<typename T> inline pair<T, T> MaxInVector_int(vector<T> vec){T MaxVal = -INF, MaxId = 0;for(int i = 0; i < (int)vec.size(); i ++) if(MaxVal < vec[i]) MaxVal = vec[i], MaxId = i; return {MaxVal, MaxId};}
template<typename T> inline pair<T, T> MinInVector_int(vector<T> vec){T MinVal = INF, MinId = 0;for(int i = 0; i < (int)vec.size(); i ++) if(MinVal > vec[i]) MinVal = vec[i], MinId = i; return {MinVal, MinId};}
template<typename T> inline pair<map<T, T>, vector<T> > DIV(T n){T nn = n;map<T, T> cnt;vector<T> div;for(ll i = 2; i * i <= nn; i ++){while(n % i == 0){if(!cnt[i]) div.push_back(i);cnt[i] ++;n /= i;}}if(n != 1){if(!cnt[n]) div.push_back(n);cnt[n] ++;n /= n;}return {cnt, div};}
template<typename T>             vector<T>& operator--            (vector<T> &v){for (auto& i : v) --i;            return  v;}
template<typename T>             vector<T>& operator++            (vector<T> &v){for (auto& i : v) ++i;            return  v;}
template<typename T>             istream& operator>>(istream& is,  vector<T> &v){for (auto& i : v) is >> i;        return is;}
template<typename T>             ostream& operator<<(ostream& os,  vector<T>  v){for (auto& i : v) os << i << ' '; return os;}


//欧拉函数-------------------------------------------------------------------------------------------------------------------------

const int maxn = 40010;
bool isprime[maxn];
vector<int> prime;
int phi[maxn];

inline void GET_PHI(){
        phi[1] = 1;
        isprime[0] = isprime[1] = 1;
        for(int i = 2; i <= maxn; i ++){
                if(!isprime[i]) prime.push_back(i), phi[i] = i - 1;//质数的欧拉值为本身-1
                for(int j = 0; j < prime.size() && i * prime[j] <= maxn; j ++){
                        isprime[i * prime[j]] = true;
                        if(i % prime[j] == 0){
                                phi[i * prime[j]] = phi[i] * prime[j];//积性函数性质
                                break;
                        }else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
                }
        }
}

inline void solve1(){GET_PHI();
        int n; cin >> n;
        int res = 0;
        for(int i = 1; i < n; i ++) res += phi[i];//欧拉值累加
        cout << (n == 1? 0 : (res << 1 | 1)) << endl;
}

//--------------------------------------------------------------------------------------------------------------------------------


//莫比乌斯反演----------------------------------------------------------------------------------------------------------------------

const int maxn = 40010;

bool isprime[maxn];
ll mu[maxn], sum[maxn];//Mobius函数表
ll n;
vector<ll> prime;

inline void Mobius(){//线性筛
        isprime[0] = isprime[1] = 1;
        mu[1] = 1;//特判mu[i] = 1
        for(ll i = 2; i <= maxn; i ++){
                if( !isprime[i] ) mu[i] = -1, prime.push_back(i);//质数的质因子只有自己,所以为-1
                for(ll j = 0; j < prime.size() && i * prime[j] <= maxn; j ++){
                        isprime[i * prime[j]] = 1;
                        if(i % prime[j] == 0) break;
                        mu[i * prime[j]] = -mu[i];//积性函数性质: (i * prime[j])多出来一个质数因数(prime[j]),修正为 (-1) * mu[i]
                }
        }
        //剩余的没筛到的是其他情况,为0

        for(int i = 1; i < maxn; i ++) sum[i] = sum[i - 1] + mu[i];//记录前缀和,为了整除分块
}

inline ll g(ll k, ll x){ return k / (k / x); }//整除分块的r值

inline void solve2(){Mobius();
        cin >> n; n --;
        if(n == 0){
                cout << 0 << endl;
                return;
        }
        ll res = 0;
        for(ll l = 1, r; l <= n; l = r + 1){//整出分块累加
                r = MIN(n, g(n, l));
                res += (ll)(sum[r] - sum[l - 1]) * (n / l) * (n / l);//公式
        }
        cout << res + 2 << endl;//+两个坐标轴的贡献

}

//--------------------------------------------------------------------------------------------------------------------------------

CHIVAS_{
        solve1();
        _REGAL;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

# 洛谷P2522_Problemb

# 🔗

# 💡

题意让求:
f(k)=x=ABy=CD[gcd(x,y)=k]f(k)=\sum_{x=A}^B\sum_{y=C}^D[gcd(x,y)=k]

为了满足:
F(k)=ndf(d)F(k)=\sum_{n|d}f(d)

设:
F(k)=x=ABx=CD[kgcd(x,y)]F(k)=\sum_{x=A}^B\sum_{x=C}^D[k|gcd(x,y)]

为使枚举的x,yx,y均为kk的倍数
x=xk,y=ykx' = \frac xk,\quad y' = \frac yk,我们枚举倍数
F(k)=x=A1kBky=C1kDk=(BkA1k)(DkC1k)F(k)=\sum_{x'=\frac{A - 1}{k}}^{\frac Bk}\sum_{y'=\frac{C-1}{k}}^{\frac Dk}=(\left \lfloor \frac Bk \right \rfloor-\left \lfloor \frac{A-1}k \right \rfloor)*(\left \lfloor \frac Dk\right \rfloor -\left \lfloor \frac{C-1}k \right \rfloor)

根据莫比乌斯反演定理得:
f(k)=kdμ(dk)F(d)f(k)=\sum_{k|d}\mu(\frac dk)F(d)
为了使枚举到的d均为k的倍数
我们设d=dkH=Hkd' = \frac dk\quad H'=\frac Hk,此时d=dkd=d'k

f(k)=d=1min(Bk,Dk)μ(d)F(dk)f(k)=\sum_{d'=1}^{min(\frac Bk,\frac Dk)}\mu(d')F(d'k)

F(dk)=(BdkA1dk)(DdkC1dk\because F(d'k)=(\left \lfloor \frac B{d'k} \right \rfloor-\left \lfloor \frac{A-1}{d'k} \right \rfloor)*(\left \lfloor \frac D{d'k}\right \rfloor -\left \lfloor \frac{C-1}{d'k} \right \rfloor

A=A1k,B=Bk,C=C1k,D=DkA'=\frac{A-1}k,\quad B'=\frac Bk,\quad C'=\frac{C-1}k,\quad D'=\frac Dk

f(k)=d=1min(B,D)μ(d)(BdAd)(DdCd\therefore f(k)=\sum_{d'=1}^{min(B',D')}\mu(d')(\left \lfloor \frac {B'}{d'} \right \rfloor-\left \lfloor \frac{A'}{d'} \right \rfloor)(\left \lfloor \frac {D'}{d'}\right \rfloor -\left \lfloor \frac{C'}{d'} \right \rfloor

#

const ll maxn = 2e6 + 10;//杜教筛的安全maxn

ll mu[maxn];//Mobius函数表
vector<ll> prime;
ll isprime[maxn];
ll sum[maxn];//mu的前缀和

inline void Mobius(){//线性筛
        mu[1] = 1;//特判mu[i] = 1
        isprime[0] = isprime[1] = 1;
        for(ll i = 2; i < maxn; i ++){
                if(!isprime[i]) mu[i] = -1, prime.push_back(i);//质数的质因子只有自己,所以为-1
                for(ll j = 0; j < prime.size() && i * prime[j] < maxn; j ++){
                        isprime[i * prime[j]] = 1;
                        if(i % prime[j] == 0) break;
                        mu[i * prime[j]] = - mu[i];//积性函数性质: (i * prime[j])多出来一个质数因数(prime[j]),修正为 (-1) * mu[i]
                }
        }
        //剩余的没筛到的是其他情况,为0
        for(ll i = 1; i < maxn; i ++) sum[i] = sum[i - 1] + mu[i];//记录前缀和,为了整除分块
}

inline ll g(ll k, ll x){ return k / (k / x); }//整除分块的r值


map<ll, ll> S;//杜教筛处理出的前缀和


inline ll SUM(ll x){//杜教筛
        if(x < maxn) return sum[x];
        if(S[x]) return S[x];
        ll res = 1;
        for(ll L = 2, R; L <= x; L = R + 1){
                R = MIN(x, g(x, L));
                res -= (R - L + 1) * SUM(x / L);//模数相减会出负数,所以加上一个mod
        }return S[x] = res;
}

inline void solve(){
        ll A, B, C, D, K; cin >> A >> B >> C >> D >> K;
        A = (A - 1) / K, B = B / K, C = (C - 1) / K, D = D / K;
        ll n = MIN(B, D);
        ll res = 0;
        for(ll l = 1, r; l <= n; l = r + 1){
                ll cmp1 = (A / l)? MIN(g(A, l), g(B, l)) : g(B, l);//防止除0
                ll cmp2 = (C / l)? MIN(g(C, l), g(D, l)) : g(D, l); //防止除0
                r = MIN(cmp1, cmp2);//确定块右端点

                res += (sum[r] - sum[l - 1]) * (B / l - A / l) * (D / l - C / l);//公式
        }cout << res << endl;
}

CHIVAS_{Mobius();
        ll cass;
        EACH_CASE(cass){
                solve();
        }
        _REGAL;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

# 洛谷P2568_GCD

# 🔗

# 💡

i=1nj=1n[gcd(i,j){prime}]=p{prime}ni=1nj=1n[gcd(i,j)=p]=p{prime}ni=1npj=1np[gcd(i,j)=1]\begin{aligned}&\sum\limits_{i=1}^n\sum\limits_{j=1}^n[gcd(i,j)\in\{prime\}]\\=&\sum\limits_{p\in \{prime\}}^{\le n}\sum\limits_{i=1}^n\sum\limits_{j=1}^n[gcd(i,j)=p]\\=&\sum\limits_{p\in\{prime\}}^{\le n}\sum\limits_{i=1}^{\left\lfloor\frac np\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac np\right\rfloor}[gcd(i,j)=1]\end{aligned}
对于i=1npj=1np[gcd(i,j)=1]\sum\limits_{i=1}^{\left\lfloor\frac np\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac np\right\rfloor}[gcd(i,j)=1]
我们可以使用莫反变成μ(d)nd2\mu(d)\left\lfloor\frac nd\right\rfloor^2
(具体操作请看这里) 那么就是让求
p{prime}nd=1npμ(d)nd2\sum\limits_{p\in\{prime\}}^{\le n}\sum\limits_{d=1}^{\left\lfloor\frac np\right\rfloor}\mu(d)\left\lfloor\frac nd\right\rfloor^2
素数表直接用莫比乌斯函数打表得到的即可

#

namespace Number {
        const ll N = 1e7 + 10;
        bool notprime[N];
        ll mu[N];
        vector<ll> prime;
        ll sum[N];

        inline void Sieve () {
                notprime[1] = notprime[0] = mu[1] = 1;
                for ( ll i = 2; i < N; i ++ ) {
                        if ( !notprime[i] ) 
                                prime.push_back(i),
                                mu[i] = -1;
                        for ( ll j = 0; j < prime.size() && i * prime[j] < N; j ++ ) {
                                notprime[i * prime[j]] = 1;
                                if ( i % prime[j] == 0 ) continue;
                                mu[i * prime[j]] = -mu[i];
                        }
                }
                for ( ll i = 1; i < N; i ++ ) sum[i] = sum[i - 1] + mu[i];
        }

        inline ll g ( ll k, ll x ) { return k / (k / x); }

        map<ll, ll> S;
        inline ll SUM ( ll x ) {
                if ( x < N ) return sum[x];
                if ( S[x] ) return S[x];
                ll res = 1;
                for ( ll L = 2, R; L <= x; L = R + 1 ) {
                        R = min ( x, g(x, L) );
                        res -= (R - L + 1) * SUM(x / L);
                } return S[x] = res;
        }
} using namespace Number;

inline ll Solve ( ll n, ll k ) {
        n /= k;
        ll res = 0;
        for ( ll l = 1, r; l <= n; l = r + 1 ) {
                r = g(n, l);
                res += (SUM(r) - SUM(l - 1)) * (n / l) * (n / l);
        }
        return res;
}

int main () {
        ios::sync_with_stdio(false); Sieve ();
        int n; cin >> n;
        ll res = 0;
        for ( int i = 0; i < prime.size() && prime[i] <= n; i ++ ) res += Solve (n, prime[i]);
        cout << res << endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

# 洛谷P3172_选数

# 🔗

https://www.luogu.com.cn/problem/P3172

# 💡

题目让求
i1=LHi2=LH....in=LH[gcd=k]\sum\limits_{i_1=L}^H\sum\limits_{i_2=L}^H....\sum\limits_{i_n=L}^H[gcd=k]

所以我们令:
f(k)=i1=LHi2=LH....in=LH[gcd=k]f(k)=\sum\limits_{i_1=L}^H\sum\limits_{i_2=L}^H....\sum\limits_{i_n=L}^H[gcd=k]

为满足:
F(k)=kdf(d)F(k)=\sum\limits_{k|d}f(d)

令:
F(k)=i1=LHi2=LH....in=LH[kgcd]F(k) = \sum\limits_{i_1=L}^H\sum\limits_{i_2=L}^H....\sum\limits_{i_n=L}^H[k|gcd]

为了使每个i都是k的倍数保证每次枚举都是可以使得[kgcd]=1[k|gcd]=1
我们设i=iki'=\frac ik,枚举ii',也就是k的倍数
得到:
F(k)=i1=L1kHki2=L1kHk....in=L1kHk1F(k) = \sum\limits_{i_1'=\frac{L-1}{k}}^\frac Hk\sum\limits_{i_2'=\frac{L-1}{k}}^\frac Hk....\sum\limits_{i_n'=\frac{L-1}{k}}^\frac Hk1

可以化简为:
F(k)=(HkL1k)nF(k)=(\left \lfloor \frac{H}{k} \right \rfloor - \left \lfloor \frac{L-1}{k} \right \rfloor )^n

由莫反定理得:
f(k)=kdμ(dk)F(d)f(k)=\sum\limits_{k|d}\mu(\frac dk)F(d)
为了使枚举到的d均为k的倍数
我们设d=dkH=HkL=L1kd' = \frac dk\quad H'=\frac Hk\quad L'=\frac{L-1}{k},此时d=dkd=d'k

则:
f(k)=d=1Hμ(d)F(dk)f(k)=\sum\limits_{d'=1}^{H'}\mu(d')F(d'k)

此时F(dk)=(HdkL1dk)nF(d'k)=(\left \lfloor \frac{H}{d'k} \right \rfloor - \left \lfloor \frac{L-1}{d'k} \right \rfloor )^n

所以:
f(k)=d=1Hμ(d)(HdLd)nf(k)=\sum_{d'=1}^{H'}\mu(d')(\left \lfloor \frac{H'}{d'} \right \rfloor - \left \lfloor \frac{L'}{d'} \right \rfloor )^n

因为HH'可能会很大,所以我们整除分块
同时需要前缀和以便得到很大的数的莫比乌斯函数
这里用杜教筛计算前缀和即可

#

#include <iostream>
#include <vector>
#include <map>
#define ll long long

using namespace std;

const ll maxn = 2e6 + 10;//杜教筛的安全maxn
const ll mod = 1e9 + 7;

ll mu[maxn];//Mobius函数表
vector<ll> prime;
ll isprime[maxn];
ll sum[maxn];//mu的前缀和

inline void Mobius(){//线性筛
        mu[1] = 1;//特判mu[i] = 1
        isprime[0] = isprime[1] = 1;
        for ( ll i = 2; i < maxn; i ++ ) {
                if ( !isprime[i] ) mu[i] = -1, prime.push_back(i);//质数的质因子只有自己,所以为-1
                for ( ll j = 0; j < prime.size() && i * prime[j] < maxn; j ++ ) {
                        isprime[i * prime[j]] = 1;
                        if ( i % prime[j] == 0 ) break;
                        mu[i * prime[j]] = - mu[i];//积性函数性质: (i * prime[j])多出来一个质数因数(prime[j]),修正为 (-1) * mu[i]
                }
        }
        //剩余的没筛到的是其他情况,为0
        for ( ll i = 1; i < maxn; i ++ ) sum[i] = sum[i - 1] + mu[i];//记录前缀和,为了整除分块
}

map<ll, ll> S;//杜教筛处理出的前缀和

inline ll g ( ll k, ll x ) { return k / (k / x); }//整除分块的r值

inline ll SUM ( ll x ) {//杜教筛
        if ( x < maxn ) return sum[x];
        if ( S[x]) return S[x];
        ll res = 1;
        for ( ll L = 2, R; L <= x; L = R + 1 ) {
                R = min ( x, g ( x, L ) );
                res = ( res - (R - L + 1) * SUM(x / L) % mod + mod ) % mod;//模数相减会出负数,所以加上一个mod
        }return S[x] = res;
}

inline ll ksm ( ll a, ll b ) {//计算那个n次方
        ll res = 1;
        while ( b ) {
                if ( b & 1 ) res = res * a % mod;
                a = a * a % mod;
                b >>= 1;
        } return res;
}

int main () { Mobius();
        ll n, k, L, H; cin >> n >> k >> L >> H; L = (L - 1) / k, H /= k;//L直接处理为L',H直接处理为H'
        ll res = 0;
        for ( ll l = 1, r; l <= H; l = r + 1 ) {

                if ( L / l) r = min(g(L, l), g(H, l));//防止出现除0的情况
                else r =  g ( H, l );

                res = ( res + ( SUM ( r ) - SUM ( l - 1 ) + mod ) * ksm ( H / l - L / l, n ) % mod ) % mod;//公式,但模数相减会出负数,所以加上一个mod
        } cout << res << endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

# 洛谷P3327_约数个数和

# 🔗

20220413213124

# 💡

i=1nj=1md(ij)=i=1nj=1maibj[(a,b)=1](d(ij)=aibj[(a,b)=1])=i=1nj=1maibjx(a,b)μ(x)(yxμ(y)=[x=1])\begin{aligned} &\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\\ =&\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{a|i}\sum\limits_{b|j}[(a,b)=1]\qquad&(d(ij)=\sum\limits_{a|i}\sum\limits_{b|j}[(a,b)=1])\\ =&\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{a|i}\sum\limits_{b|j}\sum\limits_{x|(a,b)}\mu(x)&(\sum\limits_{y|x}\mu(y)=[x=1])\end{aligned}
xx 提前,i,ji,j 枚举 xx 倍数
中间跳过了 a,ba,b 所以对于 ii 是要出现 d(ix)d(\frac ix) 次,对于 jj 是要出现 d(jx)d(\frac jx)
则原式
=i=1nj=1mxi,xjμ(x)d(ix)d(jx)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{x|i,x|j}\mu(x)d(\frac ix)d(\frac jx)
=x=1min(n,m)μ(x)xid(xi)xjd(xj)=\sum\limits_{x=1}^{min(n,m)}\mu(x)\sum\limits_{x|i}d(\frac xi)\sum\limits_{x|j}d(\frac xj)
i=ix,j=jxi=\frac ix,j=\frac jx 则原式
=x=1min(n,m)μ(x)i=1nxd(i)j=1mxd(j)=\sum\limits_{x=1}^{min(n,m)}\mu(x)\sum\limits_{i=1}^{\left\lfloor\frac nx\right\rfloor}d(i)\sum\limits_{j=1}^{\left\lfloor\frac mx\right\rfloor}d(j)
sumd(x)=i=1xd(i)sumd(x)=\sum\limits_{i=1}^xd(i)
则原式
=x=1min(n,m)μ(x)sumd(nx)sumd(mx)=\sum\limits_{x=1}^{min(n,m)}\mu(x)sumd(\left\lfloor\frac nx\right\rfloor)sumd(\left\lfloor\frac mx\right\rfloor)

我们求 d(i)d(i) 可以使用唯一分解定理 i=p1a1p2a2...pkakd(i)=i=1k(ai+1)i=p_1^{a_1}p_2^{a_2}...p_k^{a_k}\rightarrow d(i)=\sum\limits_{i=1}^k(a_i+1) 进行预处理,sumd(i)sumd(i) 即为前缀和
这样我们就可以对这个最终式子进行数论分块了

#

const int N = 5e4 + 10;

namespace Number {
        bool ntp[N];
        vector<int> prime;
        int mu[N];
        ll d[N];
        map<int, int> cntp[N];
        inline void Sieve () {
                ntp[0] = ntp[1] = true;
                mu[1] = 1;
                for (int i = 2; i < N; i ++) {
                        if (!ntp[i]) prime.push_back(i), mu[i] = -1;
                        for (int j = 0; j < prime.size() && i * prime[j] < N; j ++) {
                                ntp[i * prime[j]] = 1;
                                if (i % prime[j] == 0) break;
                                mu[i * prime[j]] = -mu[i];
                        }
                }
                for (int i = 1; i < N; i ++) d[i] = 1;
                for (int p : prime) {
                        for (int j = p; j < N; j += p) {
                                int tmp = j;
                                while (tmp % p == 0) tmp /= p, cntp[j][p] ++;
                        }
                }
                for (int i = 1; i < N; i ++) {
                        for (auto j : cntp[i]) {
                                d[i] *= 1ll * j.second + 1;
                        }
                }
                for (int i = 1; i < N; i ++) mu[i] += mu[i - 1], d[i] += d[i - 1];
        }
} using namespace Number;

inline int g (int k, int x) {return k / (k / x);}

inline void Solve () {
        int n, m; cin >> n >> m;
        ll res = 0; int mn = min(n, m);
        for (int l = 1, r; l <= mn; l = r + 1) {
                r = min(g(n, l), g(m, l));
                res += 1ll * (mu[r] - mu[l - 1]) * d[n / l] * d[m / l];
        }
        cout << res << endl;
}

int main () {
        cin.tie(0)->sync_with_stdio(0);
        cin.exceptions(cin.failbit);

        Sieve();

        int cass; cin >> cass; while (cass --) {
                Solve();
        }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

# 洛谷P3455_ZAP-Queries

# 🔗

# 💡

题意让求:
x=1ay=1b[gcd(x,y)=k]\sum\limits_{x=1}^a\sum\limits_{y=1}^b[gcd(x, y)=k]

我们只需要设置:
f(k)=x=1ay=1b[gcd(x,y)=k]f(k)=\sum\limits_{x=1}^a\sum\limits_{y=1}^b[gcd(x, y)=k]

为使F(n)=ndf(d)F(n)=\sum\limits_{n|d}f(d)成立

我们设置
F(k)=x=1ay=1b[kgcd(x,y)]F(k)=\sum\limits_{x=1}^a\sum\limits_{y=1}^b[k|gcd(x, y)]

为了准确计算所有[kgcd(x,y)]=1[k|gcd(x,y)]=1的情况
我们用x=xk,y=ykx'=\frac xk,\quad y'=\frac yk来表示我们枚举的都是k的倍数

则此时F(k)=x=1aky=1bk1=akbkF(k)=\sum\limits_{x'=1}^{\frac ak}\sum\limits_{y'=1}^{\frac bk}1 = \left \lfloor \frac ak \right \rfloor * \left \lfloor\frac bk \right \rfloor

根据莫比乌斯反演定理得
f(k)=kdμ(dk)F(d)f(k)=\sum\limits_{k|d}\mu(\frac dk)F(d)

我们枚举k的倍数,所以设d=dk,d=dkd'=\frac dk,\quad d=d'k,枚举dd'
并设a=ak,b=bka'=\left \lfloor \frac ak\right \rfloor,b'=\left \lfloor \frac bk\right \rfloor

f(k)=d=1min(a,b)μ(d)F(dk)f(k)=\sum\limits_{d'=1}^{min(a',b')}\mu(d')F(d'k)

F(dk)=adkbdk\because F(d'k)= \left \lfloor \frac a{d'k} \right \rfloor * \left \lfloor\frac b{d'k} \right \rfloor

F(dk)=adbdF(d'k)=\left \lfloor \frac {a'}{d'} \right \rfloor * \left \lfloor\frac {b'}{d'} \right \rfloor

f(k)=d=1min(a,b)μ(d)adbdf(k)=\sum\limits_{d'=1}^{min(a',b')}\mu(d')\left \lfloor \frac {a'}{d'}\right \rfloor\left \lfloor \frac{b'}{d'}\right \rfloor

#

const ll maxn = 5e4 + 10;

ll mu[maxn];//Mobius函数表
vector<ll> prime;
ll isprime[maxn];
ll sum[maxn];//mu的前缀和

inline void Mobius(){//线性筛
        mu[1] = 1;//特判mu[i] = 1
        isprime[0] = isprime[1] = 1;
        for(ll i = 2; i < maxn; i ++){
                if(!isprime[i]) mu[i] = -1, prime.push_back(i);//质数的质因子只有自己,所以为-1
                for(ll j = 0; j < prime.size() && i * prime[j] < maxn; j ++){
                        isprime[i * prime[j]] = 1;
                        if(i % prime[j] == 0) break;
                        mu[i * prime[j]] = - mu[i];//积性函数性质: (i * prime[j])多出来一个质数因数(prime[j]),修正为 (-1) * mu[i]
                }
        }
        //剩余的没筛到的是其他情况,为0
        for(ll i = 1; i < maxn; i ++) sum[i] = sum[i - 1] + mu[i];//记录前缀和,为了整除分块
}

inline ll g(ll k, ll x){ return k / (k / x); }//整除分块的r值

inline void solve(){
        ll a, b, d; scanf("%lld%lld%lld", &a, &b, &d); a /= d, b /= d;
        ll res = 0;
        ll n = MIN(a, b);//求最小边界
        for(ll l = 1, r; l <= n; l = r + 1){
                r = MIN(n, MIN(g(a, l), g(b, l)));//解块
                res += (sum[r] - sum[l - 1]) * (a / l) * (b / l);//套公式
        }printf("%lld\n", res);
}

CHIVAS_{Mobius();
        int cass;
        scanf("%d", &cass);
        while(cass --){
                solve();
        }
        _REGAL;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

# 洛谷P3704_数字表格

# 🔗

# 💡

main(n,m)=i=1nj=1mf(i,j)=k=1mnfki=1nj=1m[(i,j)=k]=k=1mnfkd=1mnkμ(d)ndkmdk\begin{aligned}&main(n,m)\\=&\prod\limits_{i=1}^n\prod\limits_{j=1}^mf_{(i,j)}\\=&\prod_{k=1}^{mn}f_k^{\sum\limits_{i=1}^n\sum\limits_{j=1}^m[(i,j)=k]}\\=&\prod\limits_{k=1}^{mn}f_k^{\sum\limits_{d=1}^{\left\lfloor\frac {mn}k\right\rfloor}\mu(d)\left\lfloor\frac {n}{dk}\right\rfloor\left\lfloor\frac {m}{dk}\right\rfloor}\end{aligned}

两个变量换成一个 T=dk,k=Td,d=TkT=dk,\;k=\frac Td,\;d=\frac Tk

=k=1mnfkTk=1mnμ(Tk)mTnT=\prod\limits_{k=1}^{mn}f_k^{\sum\limits_{\frac Tk=1}^{mn}\mu(\frac Tk)\left\lfloor\frac mT\right\rfloor\left\lfloor\frac nT\right\rfloor}

指数可以看做 TT 枚举 kk 倍数

=T=1mnkTfkμ(Tk)mTnT=\prod\limits_{T=1}^{mn}\prod\limits_{k\mid T}f_k^{\mu(\frac Tk)\left\lfloor\frac mT\right\rfloor\left\lfloor\frac nT\right\rfloor}

g(T)=kTfkμ(Tk)g(T)=\prod\limits_{k\mid T}f_k^{\mu(\frac Tk)}

=T=1mng(T)mTnT=\prod\limits_{T=1}^{mn}g(T)^{\left\lfloor\frac mT\right\rfloor\left\lfloor\frac nT\right\rfloor}

g(T)g(T) 可以预处理,外层数论分块

#

namespace Number {
        const ll N = 1e6 + 10;
        const ll mod = 1e9 + 7;
        ll mu[N], sum[N], g[N], f[N];
        bool notprime[N];
        vector<ll> prime;
        inline ll ksm ( ll a, ll b ) {
                ll res = 1;
                while ( b ) {
                        if ( b & 1 ) res = res * a % mod;
                        a = a * a % mod;
                        b >>= 1;
                }
                return res;
        }
        inline void Sieve () {
                notprime[0] = notprime[1] = mu[1] = f[1] = g[0] = g[1] = 1; f[0] = 0;
                for ( ll i = 2; i < N; i ++ ) {
                        f[i] = (f[i - 1] + f[i - 2]) % mod, g[i] = 1;
                        if ( !notprime[i] ) 
                                prime.push_back(i),
                                mu[i] = -1;
                        for ( ll j = 0; j < prime.size() && prime[j] * i < N; j ++ ) {
                                notprime[i * prime[j]] = 1;
                                if ( i % prime[j] == 0 ) break;
                                mu[i * prime[j]] = -mu[i];
                        }
                }
        }
        inline ll Inv ( ll x ) { return ksm(x, mod - 2); }
        inline ll Get ( ll n, ll k ) { return n / (n / k); }
        inline void Pre () {
                for ( ll i = 0; i < N; i ++ ) sum[i] = (sum[i - 1] + mu[i]) % mod;
                for ( ll k = 1; k < N; k ++ ) {
                        for ( ll T = k; T < N; T += k ) {
                                if ( mu[T / k] == 1 )        g[T] = g[T] * f[k] % mod; 
                                else if ( mu[T / k] == -1 )  g[T] = g[T] * Inv(f[k]) % mod;
                        }
                }
                for ( ll i = 1; i < N; i ++ ) g[i] = g[i - 1] * g[i] % mod;
        }
} using namespace Number;

inline void Solve () {
        ll n, m; cin >> n >> m; ll mn = min ( m, n );
        ll res = 1;
        for ( ll l = 1, r; l <= mn; l = r + 1 ) {
                r = min ( Get(n, l), Get(m, l) );
                res = res * ksm( g[r] * Inv(g[l - 1]) % mod, (m / l) * (n / l) % (mod - 1) ) % mod;
        }
        cout << res << endl;
}

int main () {
        ios::sync_with_stdio(false); Sieve (); Pre ();
        ll cass; cin >> cass; while ( cass -- ) Solve ();
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

# 洛谷P3768_简单的数学题

# 🔗

# 💡

main(n)=i=1nj=1nij(i,j)=k=1nki=1nij=1nj[(i,j)=k]=k=1nkf(k)\begin{aligned}main(n)=&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij(i,j)\\=&\sum\limits_{k=1}^nk\sum\limits_{i=1}^ni\sum\limits_{j=1}^nj[(i,j)=k]\\=&\sum\limits_{k=1}^nk{\color{red}f(k)}\end{aligned}

莫比乌斯反演一下
f(k)=i=1nj=1n[(i,j)=k]f(k)=\sum\limits_{i=1}^n\sum\limits_{j=1}^n[(i,j)=k] F(k)=i=1nj=1n[k(i,j)]=i=1nkikj=1nkjk=k2((1+nk)nk2)2\begin{aligned}F(k)=&\sum\limits_{i=1}^n\sum\limits_{j=1}^n[k\mid(i,j)]\\=&\sum\limits_{i=1}^{\frac nk}ik\sum\limits_{j=1}^{\frac nk}jk\\=&k^2(\frac{(1+\frac nk)\frac nk}2)^2\end{aligned}
f(k)=d=1nμ(dk)F(d)=d=1nkμ(d)F(dk)=d=1nkμ(d)(dk)2((1+ndk)ndk2)2=d=1nkμ(d)(dk)2sum(ndk)2\begin{aligned}\therefore f(k)=&\sum\limits_{d=1}^n\mu(\frac dk)F(d)\\=&\sum\limits_{d=1}^{\frac nk}\mu(d)F(dk)\\=&\sum\limits_{d=1}^{\frac nk}\mu(d)(dk)^2(\frac{(1+\frac n{dk})\frac n{dk}}2)^2\\=&\sum\limits_{d=1}^{\frac nk}\mu(d)(dk)^2{\color{red}sum(\frac n{dk})}^2\end{aligned}
main(n)=k=1nkd=1nkμ(d)(dk)2sum(ndk)2main(n)=\sum\limits_{k=1}^nk\sum\limits_{d=1}^{\frac nk}\mu(d)(dk)^2sum(\frac n{dk})^2
T=dkT=dk
main(n)=k=1nkTk=1nkμ(Tk)T2sum(nT)2=T=1nT2sum(nT)kTkμ(Tk)\begin{aligned}main(n)=&\sum\limits_{k=1}^nk\sum\limits_{\frac Tk=1}^{\frac nk}\mu(\frac Tk)T^2sum(\frac nT)^2\\=&\sum\limits_{T=1}^nT^2sum(\frac nT)\sum\limits_{k|T}k\mu(\frac Tk)\end{aligned}

对于 kTkμ(Tk)\sum\limits_{k|T}k\mu(\frac Tk) 这部分,应该很感性地认识到这是狄利克雷卷积里的性质
那么直接 kTkμ(Tk)=(μId)(T)=ϕ(T)\begin{aligned}&\sum\limits_{k|T}k\mu(\frac Tk)\\=&(\mu*Id)(T)\\=&\phi(T)\end{aligned} main(n)=T=1nT2sum(nT)ϕ(T)\therefore main(n)=\sum\limits_{T=1}^nT^2sum(\frac nT)\phi(T)

注意到 T2T^2 不可数论分块相等
所以我们考虑与 ϕ(T)\phi(T) 放在一起进行杜教筛

#

ll n, mod, res;

namespace Number {
       const int N = 1e7;
       ll phi[N], sum[N];
       bool not_prime[N];
       vector<int> prime;
       
       inline void Sieve () {
               not_prime[1] = not_prime[0] = phi[1] = 1;
               for ( int i = 2; i < N; i ++ ) {
                       if ( !not_prime[i] ) 
                               prime.push_back(i),
                               phi[i] = i - 1;
                       for ( int j = 0; j < prime.size() && (ll)i * prime[j] < N; j ++ ) {
                               not_prime[i * prime[j]] = 1;
                               if ( i % prime[j] == 0 ) { 
                                       phi[i * prime[j]] = phi[i] * prime[j];
                                       break;
                               } else phi[i * prime[j]] = phi[i] * ( prime[j] - 1 );
                       }
               }
               for ( ll i = 1; i < N; i ++ ) sum[i] = (sum[i - 1] + i * i % mod * phi[i] % mod) % mod;
       }

       inline ll g( ll k, ll x ) { return k / (k / x); }
       inline ll ksm ( ll a, ll b ) { ll res = 1; while ( b ) { if ( b & 1 ) res = res * a % mod; a = a * a % mod; b >>= 1; } return res; }
       inline ll inv ( ll x ) { return ksm(x, mod - 2); }
       ll inv2; inline ll sigma_1_to_n ( ll n ) { n %= mod; return n * (n + 1) % mod * inv2 % mod; }
       ll inv6; inline ll sigma_1mi_to_nmi ( ll n ) { n %= mod; return n * (n + 1) % mod * (n + n + 1) % mod * inv6 % mod; }

       map<ll, ll> S;
       inline ll SUM ( ll x ) {
               if(x < N) return sum[x];
               if(S[x]) return S[x];
               ll res = sigma_1_to_n(x) * sigma_1_to_n(x) % mod;
               for(ll L = 2, R; L <= x; L = R + 1){
                       R = min(x, g(x, L));
                       res = (res - (sigma_1mi_to_nmi(R) - sigma_1mi_to_nmi(L - 1) + mod) % mod * SUM(x / L) % mod + mod) % mod;
               }return S[x] = res;
       }
} using namespace Number;


int main () {
       cin >> mod >> n; 
       Sieve (); inv2 = inv(2); inv6 = inv(6);
       for ( ll l = 1, r; l <= n; l = r + 1 ) {
               r = g(n, l);
               ll add = (SUM(r) - SUM(l - 1) + mod) % mod * sigma_1_to_n( n / l ) % mod * sigma_1_to_n( n / l ) % mod;
               res = (res + add) % mod;
       }
       cout << res << endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

# 洛谷P3911_最小公倍数之和

# 🔗

# 💡

先变一下柿子
i=1nj=1nlcm(ai,aj)=i=1nj=1naiaj1(ai,aj)=k=1mx1ki=1nj=1naiaj[(ai,aj)=k]=k=1mx1kf(k)\begin{aligned}&\sum\limits_{i=1}^n\sum\limits_{j=1}^nlcm(a_i,a_j)\\=&\sum\limits_{i=1}^n\sum\limits_{j=1}^na_ia_j\frac1{(a_i,a_j)}\\=&\sum\limits_{k=1}^{mx}\frac 1k\sum\limits_{i=1}^n\sum\limits_{j=1}^na_ia_j[(a_i,a_j)=k]\\=&\sum\limits_{k=1}^{mx}\frac 1kf(k)\end{aligned}
接下来就是感性的莫反
F(k)=i=1nj=1naiaj[k(ai,aj)]F(k)=\sum\limits_{i=1}^n\sum\limits_{j=1}^na_ia_j[k|(a_i,a_j)]
可以发现这个 F(k)F(k) 是可以通过埃氏筛预处理出来的
那么就直接
f(k)=d=1Nkμ(d)F(dk)f(k)=\sum\limits_{d=1}^{\frac Nk}\mu(d)F(dk)
则原柿就是
k=1N1kd=1Nkμ(d)F(dk)\sum\limits_{k=1}^N\frac 1k\sum\limits_{d=1}^{\frac Nk}\mu(d)F(dk)

发现线性增长的 kk 对应的 TT 的范围递减得很快
所以直接暴力就行了

#

const int N =  1e5 + 10;
int a[N], n;
ll F[N];

namespace Number {
        int mu[N];
        bool not_prime[N];
        vector<int> prime;
        inline void Sieve () {
                not_prime[0] = not_prime[1] = mu[1] = 1;
                for ( int i = 2; i < N; i ++ ) {
                        if ( !not_prime[i] ) 
                                prime.push_back(i),
                                mu[i] = -1;
                        for ( int j = 0; j < prime.size() && i * prime[j] < N; j ++ ) {
                                not_prime[i * prime[j]] = true;
                                if ( i % prime[j] == 0 ) break; 
                                mu[i * prime[j]] = -mu[i];
                        }
                }
        }

        ll mark[N];
        inline void Pre () {
                for ( int i = 0; i < n; i ++ ) mark[a[i]] += a[i];
                for ( int d = 1; d < N; d ++ ) {
                        for ( int i = d; i < N; i += d ) {
                                F[d] += mark[i];
                        }
                        F[d] *= F[d];
                }
        }
} using namespace Number;

int main () {
        cin >> n; for ( int i = 0; i < n; i ++ ) cin >> a[i];
        Pre (); Sieve ();
        ll res = 0;
        for ( int k = 1; k < N; k ++ ) {
                ll cur = 0;
                for ( int d = 1; d < N / k; d ++ ) cur += mu[d] * F[d * k];
                res += cur / k;
        }
        cout << res << endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

# 洛谷P4619_旧试题

# 🔗

20220414144100

# 💡

拆法与 洛谷P3327_约数个数和 类似
i=1Aj=1Bk=1Cd(ijk)=i=1Aj=1Bk=1Caibjck[(a,b)=1][(a,c)=1][(b,c)=1]=a=1AAab=1BBbc=1CCc[(a,b)=1][(a,c)=1][(b,c)=1]=a=1AAab=1BBbc=1CCcx(a,b)μ(x)y(a,c)μ(y)z(b,c)μ(z)=x=1min(A,B)μ(x)y=1min(A,C)μ(y)z=1min(B,C)μ(z)[x,y]aAa[x,z]bBb[y,z]cCc\begin{aligned} &\sum\limits_{i=1}^A\sum\limits_{j=1}^B\sum\limits_{k=1}^Cd(ijk)\\ =&\sum\limits_{i=1}^A\sum\limits_{j=1}^B\sum\limits_{k=1}^C\sum\limits_{a|i}\sum\limits_{b|j}\sum\limits_{c|k}[(a,b)=1][(a,c)=1][(b,c)=1]\\ =&\sum\limits_{a=1}^A\left\lfloor\frac Aa\right\rfloor\sum\limits_{b=1}^B\left\lfloor\frac Bb\right\rfloor\sum\limits_{c=1}^C\left\lfloor\frac Cc\right\rfloor[(a,b)=1][(a,c)=1][(b,c)=1]\\ =&\sum\limits_{a=1}^A\left\lfloor\frac Aa\right\rfloor\sum\limits_{b=1}^B\left\lfloor\frac Bb\right\rfloor\sum\limits_{c=1}^C\left\lfloor\frac Cc\right\rfloor\sum\limits_{x|(a,b)}\mu(x)\sum\limits_{y|(a,c)}\mu(y)\sum\limits_{z|(b,c)}\mu(z)\\ =&\sum\limits_{x=1}^{min(A,B)}\mu(x)\sum\limits_{y=1}^{min(A,C)}\mu(y)\sum\limits_{z=1}^{min(B,C)}\mu(z)\sum\limits_{[x,y]|a}\left\lfloor\frac Aa\right\rfloor\sum\limits_{[x,z]|b}\left\lfloor\frac Bb\right\rfloor\sum\limits_{[y,z]|c}\left\lfloor\frac Cc\right\rfloor \end{aligned}
后面的 [x,y]aAa\sum\limits_{[x,y]|a}\left\lfloor\frac Aa\right\rfloor 可以通过 O(nlogn)O(nlogn) 预处理出来

fa[x]=xiAxf_a[x]=\sum\limits_{x|i}\left\lfloor\frac Ax\right\rfloor
fb[x]=xiBxf_b[x]=\sum\limits_{x|i}\left\lfloor\frac Bx\right\rfloor
fc[x]=xiCxf_c[x]=\sum\limits_{x|i}\left\lfloor\frac Cx\right\rfloor
则原式
=x=1min(A,B)μ(x)y=1min(A,C)μ(y)z=1min(B,C)μ(z)fa([x,y])fb([x,z])fc([y,z])=\sum\limits_{x=1}^{min(A,B)}\mu(x)\sum\limits_{y=1}^{min(A,C)}\mu(y)\sum\limits_{z=1}^{min(B,C)}\mu(z)f_a([x,y])f_b([x,z])f_c([y,z])

这样的话硬枚举依旧是 O(n3)O(n^3)
但是硬枚举的话也能想到用 mu[x]0mu[x]\neq 0 以及 [x,y]A[x,y]\le A 这样去剪枝
那么可以开一波 三元环 优化
在统计完 a=b=ca=b=c 以及 a=b\;\or\;a=c\;\or\;b=c
利用 μ[u]0,μ[v]0,[u,v]max(A,B,C)\mu[u]\neq 0,\mu[v]\neq 0,[u,v]\le \max(A,B,C) 建边
权值设置为 [u,v][u,v]
然后跑一下三元环计数即可,时间降为 O(mm)O(m\sqrt m)mm 不会很大

#

const int N = 5e5 + 10;

namespace Number {
        bool ntp[N];
        vector<int> prime;
        int mu[N];
        inline void Sieve () {
                mu[1] = ntp[0] = ntp[1] = 1;
                for (int i = 2; i < N; i ++) {
                        if (!ntp[i]) prime.push_back(i), mu[i] = -1;
                        for (int j = 0; j < prime.size() && i * prime[j] < N; j ++) {
                                ntp[i * prime[j]] = 1;
                                if (i % prime[j] == 0) break;
                                mu[i * prime[j]] = -mu[i];
                        }
                }
        }
} using namespace Number;

const int M = 1e7 + 10;
struct Edge {
        int nxt, to;
        int val;
} edge[M];
int head[N], cnt;
inline void add_Edge (int from, int to, int val) {
        edge[++cnt] = {head[from], to, val};
        head[from] = cnt;
}

inline int gcd (int a, int b) { return b ? gcd(b, a % b) : a; }

inline void Solve () {
        int A, B, C; cin >> A >> B >> C;

        int mx = max({A, B, C}), mn = min({A, B, C});
        for (int i = 1; i <= mx; i ++) head[i] = 0; cnt = 0;
        vector<ll> fa(mx + 1, 0), fb(mx + 1, 0), fc(mx + 1, 0);
        for (int x = 1; x <= A; x ++) for (int i = x; i <= A; i += x) fa[x] += A / i;
        for (int x = 1; x <= B; x ++) for (int i = x; i <= B; i += x) fb[x] += B / i;
        for (int x = 1; x <= C; x ++) for (int i = x; i <= C; i += x) fc[x] += C / i;

        ll res = 0;

        for (int i = 1; i <= mn; i ++) if (mu[i]) res += mu[i] * mu[i] * mu[i] * fa[i] * fb[i] * fc[i];

        vector<tuple<int, int, int> > graph;
        vector<int> deg(mx + 1, 0);
        for (int g = 1; g <= mx; g ++) {
                for (int i = 1; 1ll * i * g <= mx; i ++) {
                        if (!mu[i * g]) continue;
                        for (int j = i + 1; 1ll * i * j * g <= mx; j ++) {
                                if (!mu[i * j * g]) continue;
                                if (gcd(i, j) != 1) continue;
                                int u = i * g, v = j * g, lcm = i * j * g;
                                res += mu[v] * mu[v] * mu[u] * (fa[v] * fb[lcm] * fc[lcm] + fa[lcm] * fb[v] * fc[lcm] + fa[lcm] * fb[lcm] * fc[v]);
                                res += mu[u] * mu[u] * mu[v] * (fa[u] * fb[lcm] * fc[lcm] + fa[lcm] * fb[u] * fc[lcm] + fa[lcm] * fb[lcm] * fc[u]);
                                deg[u] ++; deg[v] ++;
                                graph.push_back({u, v, lcm});                               
                        }
                }
        }

        for (auto [u, v, w] : graph) {
                if (deg[u] > deg[v]) {
                        add_Edge(u, v, w);
                } else if (deg[u] == deg[v]) {
                        add_Edge(min(u, v), max(u, v), w);
                } else {
                        add_Edge(v, u, w);
                }
        }
        vector<int> vis(mx + 1, 0);
        for (int a = 1; a <= mx; a ++) {
                for (int i = head[a]; i; i = edge[i].nxt) vis[edge[i].to] = edge[i].val;
                for (int i = head[a]; i; i = edge[i].nxt) {
                        int b = edge[i].to;
                        int val1 = edge[i].val;
                        for (int j = head[b]; j; j = edge[j].nxt) {
                                int c = edge[j].to;
                                int val2 = edge[j].val;
                                if (vis[c]) {
                                        int val3 = vis[c];
                                        res += mu[a] * mu[b] * mu[c] * (
                                                fa[val1] * fb[val2] * fc[val3] + 
                                                fa[val1] * fb[val3] * fc[val2] +
                                                fa[val2] * fb[val1] * fc[val3] + 
                                                fa[val2] * fb[val3] * fc[val1] +
                                                fa[val3] * fb[val1] * fc[val2] + 
                                                fa[val3] * fb[val2] * fc[val1]
                                        );
                                }
                        }
                }
                for (int i = head[a]; i; i = edge[i].nxt) vis[edge[i].to] = 0;
        }

        cout << res % 1000000007 << endl;
}

int main () {
        Sieve();
        ios::sync_with_stdio(false);
        int cass; cin >> cass; while (cass --) {
                Solve();
        }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

# 洛谷P6055_GCD

# 🔗

# 💡

i=1Nj=1Np=1Njq=1Nj[gcd(i,j)=1][gcd(p,q)=1]=i=1Nj=1Np=1Nq=1N[gcd(i,j)=1]j[gcd(p,q)=j]=i=1Np=1Nq=1N[gcd(i,p,q)=1]\begin{aligned}&\sum\limits_{i=1}^N\sum\limits_{j=1}^N\sum\limits_{p=1}^{\left \lfloor \frac Nj\right \rfloor}\sum\limits_{q=1}^{\left \lfloor \frac Nj\right \rfloor}[gcd(i,j)=1][gcd(p,q)=1]\\=&\sum\limits_{i=1}^N\sum\limits_{j=1}^N\sum\limits_{p=1}^N\sum\limits_{q=1}^N[gcd(i,j)=1]j[gcd(p,q)=j]\\=&\sum\limits_{i=1}^N\sum\limits_{p=1}^N\sum\limits_{q=1}^N[gcd(i,p,q)=1]\end{aligned}
f(k)=i=1Np=1Nq=1N[gcd(i,p,q)=k]f(k)=\sum\limits_{i=1}^N\sum\limits_{p=1}^N\sum\limits_{q=1}^N[gcd(i,p,q)=k]
F(k)=i=1Np=1Nq=1N[kgcd(i,p,q)]F(k)=\sum\limits_{i=1}^N\sum\limits_{p=1}^N\sum\limits_{q=1}^N[k|gcd(i,p,q)]
i=ik,p=pk,q=qki'=\frac ik,p'=\frac pk,q'=\frac qk进行枚举倍数
F(k)=i=1Nkp=1Nkq=1Nk1=Nk3\begin{aligned}F(k)=\sum\limits_{i'=1}^{\left \lfloor \frac Nk\right \rfloor}\sum\limits_{p'=1}^{\left \lfloor \frac Nk\right \rfloor}\sum\limits_{q'=1}^{\left \lfloor \frac Nk\right \rfloor}1=\left \lfloor \frac Nk\right \rfloor^3\end{aligned}
根据f(k)=kdμ(dk)F(d)f(k)=\sum\limits_{k\mid d}\mu(\frac dk)F(d)
d=dk,d=dkd'=\frac dk,d=d'k枚举倍数
f(k)=d=1Nkμ(d)F(dk)=d=1Nkμ(d)Ndk3f(k)=\sum\limits_{d'=1}^{\left \lfloor \frac Nk\right \rfloor}\mu(d')F(d'k)=\sum\limits_{d'=1}^{\left \lfloor \frac Nk\right \rfloor}\mu(d')\left \lfloor \frac N{d'k}\right \rfloor^3
本题让求f(1)=d=1Nμ(d)Nd3f(1)=\sum\limits_{d'=1}^N\mu(d')\left \lfloor \frac N{d'}\right \rfloor^3
那么公式出来了,剩下的就是杜教筛数论分块乱搞了

#

const ll N = 2e6 + 10;
const ll mod = 998244353;
namespace Number {
        bool notprime[N];
        vector<ll> prime;
        ll mu[N], sum[N];
        inline void Sieve () {
                mu[1] = notprime[1] = notprime[0] = 1;
                for ( ll i = 2; i < N; i ++ ) {
                        if ( !notprime[i] ) prime.push_back(i), mu[i] = -1;
                        for ( ll j = 0; j < prime.size() && i * prime[j] < N; j ++ ) {
                                notprime[i * prime[j]] = 1;
                                if ( i % prime[j] == 0 ) break;
                                mu[i * prime[j]] = -mu[i];
                        }
                }
                for ( ll i = 1; i < N; i ++ ) sum[i] = (sum[i - 1] + mu[i]) % mod;
        }
        inline ll g ( ll k, ll x ) { return k / (k / x); }

        map<ll, ll> S;
        inline ll SUM ( ll x ) {
                if ( x < N ) return sum[x];
                if ( S[x] ) return S[x];
                ll res = 1;
                for ( ll L = 2, R; L <= x; L = R + 1 ) {
                        R = min ( x, g(x, L) );
                        res = (res - (R - L + 1) * SUM(x / L) % mod + mod) % mod;
                } return S[x] = res;
        }
} using namespace Number;

int main () {
        Sieve();
        ll n, res = 0; cin >> n;
        for ( ll l = 1, r; l <= n; l = r + 1 ) {
                r = g(n, l);
                res = (res + (SUM(r) - SUM(l - 1) + mod) % mod * (n / l) % mod * (n / l) % mod * (n / l) % mod) % mod;
        }
        cout << res << endl;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

# ICPC吉林站2020H_Curious

# 🔗

# 💡

题目大意是给定一个序列 {a}\{a\}
每一次询问给定一个 xx
i=1nj=1n[(ai,aj)=x]\sum\limits_{i=1}^n\sum\limits_{j=1}^n[(a_i,a_j)=x]
我们可以感性地想到这一题 i=1nj=1n[(i,j)=k]\sum\limits_{i=1}^n\sum\limits_{j=1}^n[(i,j)=k]
想到我们后面在处理 F(k)=i=1nj=1n[k(i,j)]F(k)=\sum\limits_{i=1}^n\sum\limits_{j=1}^n[k\mid(i,j)] 时使用的是让 iijj 都是枚举的是 kk 的倍数
从而得到 F(k)=nk2F(k)=\left\lfloor\frac nk\right\rfloor^2
其实也就是 nn 以下 kk 的倍数个数的平方
而我们此时也可以使用这个
我们预处理一个数组 {A}\{A\} ,其中 A[i]A[i] 表示对于 {a}\{a\} 中是 ii 倍数的个数
这个可以通过对 {a}\{a\} 埃氏筛 O(nlogn)O(nlogn) 地得到
那么我们的 F(k)=A[k]2F(k)=A[k]^2
f(k)=d=1mkμ(d)A[d×k]2f(k)=\sum\limits_{d=1}^{\left\lfloor\frac mk\right\rfloor}\mu(d)A[d\times k]^2
然后什么都不用,暴力跑一遍这个式子就行了

#

const int N = 1e5 + 10;
int a[N], vis[N];
int n, m, k;
ll A[N];

namespace Number {
        ll mu[N];
        bool not_prime[N];
        vector<int> prime;

        inline void Sieve () {
                mu[1] = 1;
                not_prime[0] = not_prime[1] = 1;
                for ( int i = 2; i < N; i ++ ) {
                        if ( !not_prime[i] ) 
                                mu[i] = -1,
                                prime.push_back(i);
                        for ( int j = 0; j < prime.size() && i * prime[j] < N; j ++ ) {
                                not_prime[i * prime[j]] = 1;
                                if ( i % prime[j] == 0 ) break;
                                mu[i * prime[j]] = -mu[i];
                        } 
                }
        }
        inline int g ( int x, int k ) { return x / (x / k); }
} using namespace Number;

int main () { Sieve();
        int cass; scanf("%d", &cass); while ( cass -- ) {
                scanf("%d%d%d", &n, &m, &k);
                for ( int i = 0; i < n; i ++ ) scanf("%d", &a[i]), vis[a[i]] ++; // 记录a[i]出现次数
                for ( int i = 1; i <= m; i ++ ) {
                        for ( int j = i; j <= m; j += i ) {
                                A[i] += vis[j]; // 预处理{a}中i的倍数的个数
                        }
                }
                while ( k -- ) {
                        int x; scanf("%d", &x);
                        ll res = 0;
                        for ( int i = 1; i <= m / x; i ++ ) res += mu[i] * A[i * x] * A[i * x]; // 跑柿子
                        printf("%lld\n", res);
                }
                for ( int i = 0; i <= m; i ++ ) A[i] = vis[i] = 0; // 清空
        }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Last Updated: 10/14/2023, 7:51:49 PM