狄利克雷卷积

# 定义

ffgg 都是数论函数
定义 ffgg 的狄利克雷卷积为 HH ,使得 H=fgH=f*g

# 公式表示

H(n)=ij=nf(i)×g(j)H(n)=\sum\limits_{i * j=n}f(i)\times g(j)
H(n)=inf(i)×g(ni)H(n)=\sum\limits_{i|n}f(i)\times g(\frac ni)

# 定理

# 总览

ffgg 都是积性函数,则 fgf * g 也是积性函数
fg=gff * g=g * f
(fg)h=f(gh)(f * g) * h=f * (g * h)
f(g+h)=fg+fhf * (g+h)=f * g+f * h

# 证明

#ffgg 都是积性函数,则 fgf * g 也是积性函数

(fg)(n)×(fg)(m)=innf(i)×g(ni)×jmmf(j)×g(mj)=innjmmf(i)×f(j)×g(ni)×g(mj)=ijnmnmf(ij)×g(nmij)(nm=d,ij=k)=kddf(k)×g(dk)=(fg)(d)\begin{aligned} &(f * g)(n)\times (f * g)(m)\\ =&\sum\limits_{i|n}^nf(i)\times g(\frac ni)\times \sum\limits_{j|m}^mf(j)\times g(\frac mj)\\ =&\sum\limits_{i|n}^n\sum\limits_{j|m}^mf(i)\times f(j)\times g(\frac ni)\times g(\frac mj)\\ =&\sum\limits_{ij|nm}^{nm} f(ij)\times g(\frac{nm}{ij})\qquad\qquad &(nm=d,\;ij=k)\\ =&\sum\limits_{k|d}^df(k)\times g(\frac dk)\\ =&(f * g)(d) \end{aligned}

得证

# fg=gff * g=g * f

(fg)(n)=inf(i)×g(ni)(j=ni)=jng(j)×f(ni)=(gf)(n)\begin{aligned} &(f * g)(n)\\ =&\sum\limits_{i|n}f(i)\times g(\frac ni)\qquad\qquad&(j=\frac ni)\\ =&\sum\limits_{j|n}g(j)\times f(\frac ni)\\ =&(g * f)(n) \end{aligned}

得证

# (fg)h=f(gh)(f * g) * h=f * (g * h)

((fg)h)(n)=xy=n(fg)(x)×h(y)=xy=n(zw=xf(z)×g(w))×h(y)=zwy=n(g(w)×h(y))×f(z)=xz=n(wy=xg(w)×h(y))×f(z)=xz=n(gh)(x)×f(z)=(f(gh))(n)\begin{aligned} &((f * g) * h)(n)\\ =&\sum\limits_{xy=n}(f * g)(x)\times h(y)\\ =&\sum\limits_{xy=n}(\sum\limits_{zw=x}f(z)\times g(w))\times h(y)\\ =&\sum\limits_{zwy=n}(g(w)\times h(y))\times f(z)\\ =&\sum\limits_{xz=n}(\sum\limits_{wy=x}g(w)\times h(y))\times f(z)\\ =&\sum\limits_{xz=n}(g * h)(x)\times f(z)\\ =&(f * (g * h))(n) \end{aligned}

得证

# f(g+h)=fg+fhf * (g+h)=f * g+f * h

(f(g+h))(n)=xy=nf(x)×(g+h)(y)=xy=nf(x)×(g(y)+h(y))=xy=nf(x)×g(y)+f(x)×h(y)=xy=nf(x)×g(y)+xy=nf(x)×h(y)=(fg+fh)(n)\begin{aligned} &(f * (g+h))(n)\\ =&\sum\limits_{xy=n}f(x)\times (g+h)(y)\\ =&\sum\limits_{xy=n}f(x)\times(g(y)+h(y))\\ =&\sum\limits_{xy=n}f(x)\times g(y)+f(x)\times h(y)\\ =&\sum\limits_{xy=n}f(x)\times g(y)+\sum\limits_{xy=n}f(x)\times h(y)\\ =&(fg+f * h)(n) \end{aligned}

得证

# 推论

# 总览

11=d\;1 * 1=d
1Id=σ\;1 * Id=\sigma
μ1=ε\;\mu * 1=\varepsilon
ϕ1=Id\;\phi * 1=Id
μId=ϕ\;\mu * Id=\phi

# 证明

# 11=d1 * 1=d

(11)(n)=in1=d(n)\begin{aligned} &(1 * 1)(n)\\ =&\sum\limits_{i|n}1\\ =&d(n) \end{aligned}

# 1Id=σ1 * Id=\sigma

(1Id)(n)=(Id1)(n)=inId(i)=σ(n)\begin{aligned} &(1 * Id)(n)\\ =&(Id * 1)(n)\\ =&\sum\limits_{i|n}Id(i)\\ =&\sigma(n) \end{aligned}

# μ1=ε\mu * 1=\varepsilon

kknn 的质因子个数

(μ1)(n)(n=pnpa,n=pnp)=(μ1)(n)=dnμ(d)=i=0k(ki)(1)i1ki=(1+1)k={k=01k00=ε(n)\begin{aligned} &(\mu * 1)(n)\quad\quad&(n=\prod\limits_{p|n}p^a,\;n'=\prod\limits_{p|n}p)\\ =&(\mu * 1)(n')\\ =&\sum\limits_{d|n'}\mu(d)\\ =&\sum\limits_{i=0}^k\binom ki(-1)^i1^{k-i}\\ =&(-1+1)^k\\ =&\left\{\begin{aligned}k=0\quad&1\\k\neq0\quad&0\end{aligned}\right.\\ =&\varepsilon(n) \end{aligned}

# ϕ1=Id\phi * 1=Id

dm,1an,(a,n)=d(ad,nd)=1\forall d|m,\;1\le a\le n,\;(a,n)=d\rightarrow(\frac ad,\frac nd)=1
这样的 aa 可以选 ϕ(md)\phi(\frac md)
n=dnϕ(nd)\therefore n=\sum\limits_{d|n}\phi(\frac nd)
(ϕ1)(n)=Id(n)\therefore (\phi * 1)(n)=Id(n)

# μId=ϕ\mu * Id=\phi

我们可以根据已有的推论
ϕ1=Id\because\phi * 1=Id
ϕ1μ=Idμ\therefore\phi * 1 * \mu=Id * \mu
μ1=ε\because\mu * 1=\varepsilon
ϕε=Idμ\therefore\phi * \varepsilon=Id * \mu
观察左边的 =dnϕ(d)ε(nd)=\sum\limits_{d|n}\phi(d)\varepsilon(\frac nd)
dnd\neq n 无贡献,因为 ε(nd)=0\varepsilon(\frac nd)=0
d=nd=n 有贡献 =ϕ(n)×1=ϕ(n)=\phi(n)\times 1=\phi(n)
Idμ=ϕ\therefore Id * \mu=\phi

# 例题

洛谷P1447
题目地址 (opens new window)
题解地址 (opens new window)

Last Updated: 10/14/2023, 7:51:49 PM